广义相对论[广义相对论认为时空能够造成时空的弯曲]

各位老铁们,大家好,今天由我来为大家分享广义相对论,以及广义相对论认为时空能够造成时空的弯曲的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注搜藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

什么叫广义相对论

广义相对论是现代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律与狭义相对论加以推广。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量与动量联系在一起。

广义相对论[广义相对论认为时空能够造成时空的弯曲]

从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。

爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的膨胀宇宙模型的理论基础。

理论内容

等效原理

爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

几何基础

引力是时空局域几何性质的表现。虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力,这方面的努力在罗巴切夫斯基、波尔约、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的。非欧几何的一般数学理论是由高斯于1827年完成的(1828年发表),他在研究曲面的性质时不再借助外围空间,而直接将曲面作为研究对象,创立了曲面的“内蕴”几何学。1854年,高斯的学生黎曼将高斯的内蕴几何学推广到高维空间,建立起任意维度的弯曲空间的几何学基础,被称为黎曼几何,在爱因斯坦发展出广义相对论之前,绝大多数人认为非欧几何是无法应用到真实世界中来的。

爱因斯坦场方程以及史瓦西解

在广义相对论中,引力的作用被“几何化”——即是说:狭义相对论的闵氏空间背景加上万有引力的物理图景在广义相对论中变成了黎曼空间背景下不受力(假设没有电磁等相互作用)的自由运动的物理图景,其动力学方程与自身质量无关而成为测地线方程。

引力场方程是一个非常复杂的二阶偏微分方程,有16个自变量。

具体形式如下:

利用上述的度规可以得出引力对时间的影响。

应用

广义相对论由于它被令人惊叹地证实以及其理论上的优美,很快得到人们的承认和赞赏。然而由于牛顿引力理论对于绝大部分引力现象已经足够精确,广义相对论只提供了一个极小的修正,人们在实用上并不需要它,因此,广义相对论建立以后的半个世纪,并没有受到充分重视,也没有得到迅速发展。到20世纪60年代,情况发生变化,发现强引力天体(中子星)和3K宇宙背景辐射,使广义相对论的研究蓬勃发展起来。广义相对论对于研究天体结构和演化以及宇宙的结构和演化具有重要意义。中子星的形成和结构、黑洞物理和黑洞探测、引力辐射理论和引力波探测、大爆炸宇宙学、量子引力以及大尺度时空的拓扑结构等问题的研究正在深入,广义相对论成为物理研究的重要理论基础。

资料来源:网页链接

什么是广义的相对论?

广义相对论

爱因斯坦的第二种相对性理论(1916年)。该理论认为引力是由空间——时间几何(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量.

广义相对论:爱因斯坦的基于科学定律对所有的观察者(而不管他们如何运动的)必须是相同的观念的理论。它将引力按照四维空间—时间的曲率来解释。

广义相对论(General Relativity‎)是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。因此,狭义相对论和万有引力定律,都只是广义相对论在特殊情况之下的特例。狭义相对论是在没有重力时的情况;而万有引力定律则是在距离近、引力小和速度慢时的情况。

背景

爱因斯坦在1907年发表了一篇探讨光线在狭义相对论中,重力和加速度对其影响的论文,广义相对论的雏型就此开始形成。1912年,爱因斯坦发表了另外一篇论文,探讨如何将重力场用几何的语言来描述。至此,广义相对论的运动学出现了。到了1915年,爱因斯坦场方程式被发表了出来,整个广义相对论的动力学才终于完成。

1915年后,广义相对论的发展多集中在解开场方程式上,解答的物理解释以及寻求可能的实验与观测也占了很大的一部份。但因为场方程式是一个非线性偏微分方程,很难得出解来,所以在电脑开始应用在科学上之前,也只有少数的解被解出来而已。其中最著名的有三个解:史瓦西解(the Schwarzschild solution (1916)), the Reissner-Nordström solution and the Kerr solution。

在广义相对论的观测上,也有著许多的进展。水星的岁差是第一个证明广义相对论是正确的证据,这是在相对论出现之前就已经量测到的现象,直到广义相对论被爱因斯坦发现之后,才得到了理论的说明。第二个实验则是1919年爱丁顿在非洲趁日蚀的时候量测星光因太阳的重力场所产生的偏折,和广义相对论所预测的一模一样。这时,广义相对论的理论已被大众和大多的物理学家广泛地接受了。之后,更有许多的实验去测试广义相对论的理论,并且证实了广义相对论的正确。

另外,宇宙的膨涨也创造出了广义相对论的另一场高潮。从1922年开始,研究者们就发现场方程式所得出的解答会是一个膨涨中的宇宙,而爱因斯坦在那时自然也不相信宇宙会来涨缩,所以他便在场方程式中加入了一个宇宙常数来使场方程式可以解出一个隐定宇宙的解出来。但是这个解有两个问题。在理论上,一个隐定宇宙的解在诉学上不是稳定。另外在观测上,1929年,哈伯发现了宇宙其实是在膨涨的,这个实验结果使得爱因斯坦放弃了宇宙常数,并宣称这是我一生最大的错误(the biggest blunder in my career)。

但根据最近的一形超新星的观察,宇宙膨胀正在加速。所以宇宙常数似乎有败部复活的可能性,宇宙中存在的暗能量可能就必须用宇宙常数来解释.

基本假设

等效原理:引力和惯性力是完全等效的。

广义相对性原理:物理定律的形式在一切参考系都是不变的。

主要内容

爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

引力是时空局域几何性质的表现。虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力,这方面的努力在罗巴切夫斯基、Bolyai、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的。非欧几何的一般数学理论是由高斯的学生黎曼发展出来的。所以也称为黎曼几何或曲面几何,在爱因斯坦发展出广义相对论之前,人们都认为非欧几何是无法应用到真实世界中来的。

在广义相对论中,引力的作用被“几何化”——即是说:狭义相对论的闵氏空间背景加上万有引力的物理图景在广义相对论中变成了黎曼空间背景下不受力(假设没有电磁等相互作用)的自由运动的物理图景,其动力学方程与自身质量无关而成为测地线方程:

而万有引力定律也代之以爱因斯坦场方程:

这里有狭义相对论比较详细的资料

广义相对论是什么呢?

它本质上是要表明橡胶片几何结构的变化(拉伸)由于一个大质量的存在,导致其他物体向这个质量靠拢;巨大的质量扭曲了橡胶的几何形状,通过几何形状的改变,其他物体也受到影响。它试图说明引力近于几何学。

但这是一个相当糟糕的类比,因为它使用地球的实际引力来做所有这些。所以,不必过分强调这一切都与橡胶板几何形状的变化有关,这些都可以用牛顿的万有引力理论来解释。因此,在这个意义上,它确实依赖于引力来解释引力,尽管使用橡胶片在所有这些中成功地涉及到几何学。

一个更好的类比来自于简单地使用一张纸,如下所示。

我们知道,人的身体从一个点移动到另一个点时,往往会通过一条让他们出汗较少的路径。在没有力的情况下,它是距离*最小的路径。这就是为什么,例如,在平面上,这条路径是两点之间的直线。这些路径称为测地线;它们是弯曲空间中最直的线。

在平面空间中,当两个粒子在平行的测地线上运动**时,它们将永远保持平行,因为测地线是直线;如果两个粒子沿平行线的速度相同,那么它们之间的距离总是相同的。在弯曲空间中,在平行测地线上运动的两个粒子之间的距离会发生变化,因为测地线一般不是直线。

由于引力源使时空弯曲,使几何图形扭曲,我们预计,对于最初在平行测地线上运动的两个粒子,它们之间的距离会因引力源的存在而变化。在平坦空间中,如果它们开始相互远离,它们会继续相互远离。

这给了我们一种更准确的方式来展示重力和几何的关系,而不是图片和橡胶片的关系:

从这里我们可以看到,两个粒子开始远离对方,但由于存在弯曲时空的几何图形的质量,他们的测地线变得弯曲(没有质量,他们将继续在直线和从不满足)和粒子重新开始融合在一起,在某种程度上可能最终会议。

最后一张图是二维的,它展示了橡胶片的类比。但是橡皮板的类比只适用于第三维度(高度),因为它使用重力来说明重力,这让它不令人满意。基本上,如果时空是二维的(就像代表二维时空的橡皮板一样),你不需要一个额外的维度来解释重力的影响。这就是为什么上面的图片比较成功,可以在一张纸上复制如下。

在一张纸上画两条平行线,复制平面空间的平行测地线:

我们可以在这两条线的中间加入一个引力场地源。我们可以在纸上这样做,试着弯曲(向源方向弯曲)靠近源的纸。现在,我们可以看到,当两个粒子沿着两条“平行线”(在弯曲空间上尽可能平行的测地线)运动时,它们会相交:

现在,我必须为我糟糕的绘画技巧和更糟糕的纸张弯曲道歉!尽管如此,我们可以看到两个粒子仍然以直线运动,但在这个弯曲的几何结构中,它们可以相遇,这在之前平坦的空间中是不可能的。这两个人只是在遵循弯曲的几何。

这也表明,对于二维时空的纸面表示,我们不需要一个高度——一个额外的维度——来显示重力的影响。

广义相对论是什么东西?

广义相对论大致有3个意思:

1,宇宙中引力场愈强的地方(如太阳,白矮星,中子星及黑洞旁),空间会愈弯曲,时间会愈慢。

2,存在黑洞,而黑洞旁就是空间最弯曲,时间最慢的地方。

3,宇宙中存在宇宙常数Λ(为支持他的稳态宇宙论),与1998年发现的暗能量一样,是一种斥力。

爱因斯坦的广义相对论引力方程:

一,R_uv-1/2*R*g_uv+∧*g_uv(内斥力-在本宇宙内)=κ*T_uv(物质的能量动量张量)

(空间的弯曲,时间的变慢)

二,R_uv-1/2*R*g_uv=κ*T_uv(物质的能量动量)-∧*g_uv(外斥力-在本宇宙外)

(空间的弯曲,时间的变慢)

图中+-号代表不可分割的最小正负弦信息单位-弦比特(string bit)

(名物理学家约翰.惠勒John Wheeler曾有句名言:万物源于比特 It from bit

量子信息研究兴盛后,此概念升华为,万物源于量子比特)

注:位元即比特

什么是广义相对论?

“广义相对论的基础”发表于1916年,它是广义相对论的“标准版本”。在这里,爱因斯坦的思想已达到炉火纯青的地步,其行文如行云流水,看不到一点斧凿的痕迹。玻恩在1955年的一篇报告中说得好:“对于广义相对论的提出,我过去和现在都认为是人类认识大自然的最伟大的成果,它把哲学的深奥、物理学的直观和数学的技艺令人惊叹地结合在一起。”爱因斯坦在黑暗中探索的年代里,怀着热烈的向往,时而充满自信,时而精疲力竭,而最后终于看到了光明。相对论(狭义相对论和广义相对论)的大厦全部建成了。

1919年,爱因斯坦在介绍相对论时说:“相对论有点像两层的建筑,这两层就是狭义相对论和广义相对论。狭义相对论适用于除了引力以外的一切物理现象;广义相对论提供了引力定律以及它同自然界别种力的关系。”

广义相对论,又叫普遍相对论,它的基本原理也是两条:等效性原理,即某一加速运动的参照系中的惯性力与在一个小体积范围内的万有引力是等效的;广义相对论性原理,即物理规律在一切参照系中都是相同的。

广义相对论运用了大量的黎曼几何、张量计算、绝对微分等艰深的数学知识,充满了深邃的哲学思辨,包含着崭新的物理内容,就是高级研究人员要弄懂它也非花大力气不可,一般人自不待言,更不用说哥廷根街上的学童了。对于爱因斯坦同时代的人来说,具有这些知识的人寥寥无几。但是,由于广义相对论的预言不久得到了实验验证,所以还是引起了相当大的轰动。

什么是广义相对论

广义相对论(General Relativity),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。

广义相对论是阿尔伯特·爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立的。在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相关系,其关系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。

从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。

爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用:它直接推导出某些大质量恒星会终结为一个黑洞——时空中的某些区域发生极度的扭曲以至于连光都无法逸出。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们能够观察到处于遥远位置的同一个天体的多个成像。广义相对论还预言了引力波的存在,引力波已经被间接观测所证实,而直接观测则是当今世界像激光干涉引力波天文台(LIGO)这样的引力波观测计划的目标。此外,广义相对论还是现代宇宙学膨胀宇宙论的理论基础。

相对论是现代物理学的理论基础之一。论述物质运动与空间时间关系的理论。20世纪初由爱因斯坦创立并和其他物理学家一起发展和完善,狭义相对论于1905年创立,广义相对论于1916年完成。19世纪末由于牛顿力学和(苏格兰数学家)麦克斯韦(1831~1879年)电磁理论趋于完善,一些物理学家认为“物理学的发展实际上已经结束”,但当人们运用伽利略变换解释光的传播等问题时,发现一系列尖锐矛盾,对经典时空观产生疑问。爱因斯坦对这些问题,提出物理学中新的时空观,建立了可与光速相比拟的高速运动物体的规律,创立相对论。 狭义相对论提出两条基本原理。(1)光速不变原理:即在任何惯性系中,真空中光速c都相同,与光源及观察者的运动状况无关。(2)狭义相对性原理是指物理学的基本定律乃至自然规律,对所有惯性参考系来说都相同。

爱因斯坦的第二种相对性理论(1916年)。该理论认为引力是由空间——时间几何(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量。

广义相对论:是一种关于万有引力本质的理论。爱因斯坦曾经一度试图把万有引力定律纳入相对论的框架,几经失败后,他终于认识到,狭义相对论容纳不了万有引力定律。于是,他将狭义相对性原理推广到广义相对性,又利用在局部惯性系中万有引力与惯性力等效的原理,建立了用弯曲时空的黎曼几何描述引力的广义相对论理论。

狭义相对论与广义相对论:狭义相对论只适用于惯性系,它的时空背景是平直的四维时空,而广义相对论则适用于包括非惯性系在内的一切参考系,它的时空背景是弯曲的黎曼时空。

广义相对论是基于狭义相对论的。如果后者被证明是错误的,整个理论的大厦都将垮塌。

质量的两种不同表述

为了理解广义相对论,我们必须明确质量在经典力学中是如何定义的。

首先,让我们思考一下质量在日常生活中代表什么。“它是重量”?事实上,我们认为质量是某种可称量的东西,正如我们是这样度量它的:我们把需要测出其质量的物体放在一架天平上。我们这样做是利用了质量的什么性质呢?是地球和被测物体相互吸引的事实。这种质量被称作“引力质量”。我们称它为“引力的”是因为它决定了宇宙中所有星星和恒星的运行:地球和太阳间的引力质量驱使地球围绕后者作近乎圆形的环绕运动。

试着在一个平面上推你的汽车。你不能否认你的汽车强烈地反抗着你要给它的加速度。这是因为你的汽车有一个非常大的质量。移动轻的物体要比移动重的物体轻松。质量也可以用另一种方式定义:“它反抗加速度”。这种质量被称作“惯性质量”。

因此我们得出这个结论:我们可以用两种方法度量质量。要么我们称它的重量(非常简单),要么我们测量它对加速度的抵抗(使用牛顿定律)。

人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量。

牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。

日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。结论是,引力场中物体的加速度与其质量无关。伽利略是第一个注意到此现象的人。重要的是你应该明白,引力场中所有的物体“以同一加速度下落”是(经典力学中)惯性质量和引力质量等同的结果。

关注一下“下落”这个表述。物体“下落”是由于地球的引力质量产生了地球的引力场。两个物体在所有相同的引力场中的加速度相同。不论是月亮的还是太阳的,

它们以相同的比率被加速。这就是说它们的速度在每秒钟内的增量相同。(加速度是速度每秒的增加值)

爱因斯坦一直在寻找“引力质量与惯性质量相等”的解释。为了这个目标,他作出了被称作“等同原理”的第三假设。它说明:如果一个惯性系相对于一个伽利略系被均匀地加速,那么我们就可以通过引入相对于它的一个均匀引力场而认为它(该惯性系)是静止的。

让我们来考查一个惯性系K’,它有一个相对于伽利略系的均匀加速运动。在K 和K’周围有许多物体。此物体相对于K是静止的。因此这些物体相对于K’有一个相同的加速运动。这个加速度对所有的物体都是相同的,并且与K’相对于K的加速度方向相反。我们说过,在一个引力场中所有物体的加速度的大小都是相同的,因此其效果等同于K’是静止的并且存在一个均匀的引力场。

因此如果我们确立等同原理,物体的两种质量相等只是它的一个简单推论。 这就是为什么(质量)等同是支持等同原理的一个重要论据。

通过假定K’静止且引力场存在,我们将K’理解为一个伽利略系,(这样我们就可以)在其中研究力学规律。由此爱因斯坦确立了他的第四个原理。

文章分享结束,广义相对论和广义相对论认为时空能够造成时空的弯曲的答案你都知道了吗?欢迎再次光临本站哦!

搜索